DOIONLINE

DOIONLINE NO - IJASEAT-IRAJ-DOIONLINE-13155

Publish In
International Journal of Advances in Science, Engineering and Technology(IJASEAT)-IJASEAT
Journal Home
Volume Issue
Issue
Volume-6, Issue-3  ( Jul, 2018 )
Paper Title
Tris(Hydroxymethyl)Aminomethane Affinity Membrane Foradsorption of Lysozyme
Author Name
Sung-Ta Lin, Kai-Jie Lin, Kuei-Hsiang Chen, Yu-Kaung Chang
Affilition
Department of Chemical Engineering/ Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
Pages
54-57
Abstract
Polyacrylonitrile (PAN) nanofiber membrane was prepared by electrospinning technique. The PAN membrane used in this work comprises a polyethylene terephthalate (PET) spunbond fabric as a supporting layer with upper and lower PAN nanofiber membrane. After 3 M NaOH and diluted HCl treatments, the weak cationic exchange membrane (i.e., P-COOH) was obtained. The P-COOH membrane was then functionalized with tri-s(hydroxymethyl) aminomethane as an affinity nanofiber membrane (i.e., P-Tris). In this study, lysozyme was chosen as a model protein. The physical properties of the nanofiber membranes were characterized in terms of fiber diameter, porosity and pore size, specific area of the surface, FTIR and SEM analysis. The adsorption experiments were carried out in a well-mixed system under the various operating conditions (e.g., modification pH, adsorption pH, and the molar ratio of reactants, P-COOH/Tris). The dynamic adsorption characteristics of the P-Tris membranes for lysozyme by membrane chromatography were assessed by measurements of the breakthrough curves. The influences of operating conditions (e.g., adsorption pH, lysozyme concentration, no. of sheet membrane, and flow rate) on the adsorption performance of membrane were investigated in an AKTA prime chromatographic system (GE Healthcare). Index Terms - Polyacrylonitrilenanofiber,lysozyme,Tris, AKTA
  View Paper